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We present the first genomic-scale analysis
addressing the phylogenetic position of turtles,
using over 1000 loci from representatives of
all major reptile lineages including tuatara.
Previously, studies of morphological traits posi-
tioned turtles either at the base of the reptile
tree or with lizards, snakes and tuatara (lepido-
saurs), whereas molecular analyses typically
allied turtles with crocodiles and birds (archo-
saurs). A recent analysis of shared microRNA
families found that turtles are more closely
related to lepidosaurs. To test this hypothesis
with data from many single-copy nuclear loci dis-
persed throughout the genome, we used sequence
capture, high-throughput sequencing and pub-
lished genomes to obtain sequences from 1145
ultraconserved elements (UCEs) and their vari-
able flanking DNA. The resulting phylogeny
provides overwhelming support for the hypothesis
that turtles evolved from a common ancestor of
birds and crocodilians, rejecting the hypothesized
relationship between turtles and lepidosaurs.
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1. INTRODUCTION
The evolutionary origin of turtles has confounded the
understanding of vertebrate evolution [1] (figure 1).
Historically, turtles were thought to be early-diverging
reptiles, called anapsids, based on their skull mor-
phology and traits such as dermal armour [2]. Recent
morphological studies that included soft tissue and
developmental characters [3] allied turtles with lepido-
saurs, a group including squamates (lizards and
snakes) and tuataras. However, homoplasy stemming
from the derived skeletal specializations of turtles
limits the utility of phylogenetic inference based on
morphological data to resolve turtle placement [4,5].

Molecular studies using mitochondrial [4,6–8,16]
and nuclear DNA [5,9–14,17] typically place turtles
sister to archosaurs (crocodilians and birds; figure 1).
This molecular hypothesis was recently contradicted
by a phylogeny reconstructed from microRNAs [15]
that allied turtles with lepidosaurs. Lyson et al. [15]
suggested that prior molecular evidence for a turtle–
archosaur relationship may be the result of analytical
artefacts. If true, the hypothetical relationship between
turtles and lepidosaurs (Ankylpoda) should appear
throughout the genomes of these organisms.

Here, we test the Ankylopoda hypothesis and address
the evolutionary origin of turtles. We reconstruct a rep-
tile phylogeny using ultraconserved elements (UCEs)
[18] and their flanking sequence that we obtained
using sequence capture of DNA from a tuatara and
two species each of crocodilians, squamates and turtles
(table 1). We used UCEs because they are easily aligned
portions of extremely divergent genomes [19], allowing
many loci to be interrogated across evolutionary time-
scales, and because sequence variability within UCEs
increases with distance from the core of the targeted
UCE [20], suggesting that phylogenetically informative
content in flanking regions can inform hypotheses
spanning different evolutionary timescales. To break
up long branches and mitigate potential problems with
long-branch attraction, we selected species representing
the span of diversity within major reptilian lineages
(i.e. the most divergent crocodilians, lepidosaurs
and turtles).

2. MATERIAL AND METHODS
We enriched DNA libraries prepared with Nextera kits (Epicentre, Inc.,
Madison, WI, USA) using a synthesis (Mycroarray, Inc., Ann Arbor,
MI, USA or Agilent, Inc., Santa Clara, CA, USA) of RNA probes
[20] targeting 2386 UCEs and their flanking sequence. We generated
sequences for each enriched library using single-end, 100-base sequen-
cing on an Illumina GAIIx. After quality filtering, we assembled reads
into contigs using Velvet [21], and we matched contigs to the UCE
loci, removing duplicate hits. We generated alignments using
MUSCLE [22], and we excluded loci having missing data in any
taxon. Following alignment, we estimated the appropriate finite-sites
substitution model for each locus using MrAIC.

We prepared a concatenated dataset by partitioning loci by
substitution model prior to analysis using two runs of MrBayes [23]
for 5 000 000 iterations (four chains per run; burn-in: 50%; thinning:
100). We also used each alignment to estimate gene trees incorporating
1000 multi-locus bootstrap replicates, which we integrated into
STEAC and STAR [24] species trees. Additional details concerning
UCE sequence capture methods and phylogenetic methods are
available in Faircloth et al. [20].

3. RESULTS
We enriched genomic DNA for UCEs in corn
snake (Pantherophis guttata), African helmeted turtle
(Pelomedusa subrufa), painted turtle (Chrysemys picta),
American alligator (Alligator mississippiensis), saltwater
crocodile (Crocodylus porosus) and tuatara (Sphenodon
tuatara) (table 1). We sequenced a mean of 4.9 million
reads from each library, and from these reads, we
assembled an average of 2648 (+314 s.d.) contigs.

We supplemented these taxa with UCEs extrac-
ted from the chicken (Gallus gallus), zebra finch
(Taeniopygia guttata), Carolina anole lizard (Anolis
carolinensis) and human (Homo sapiens) genome
sequences. We combined the in silico and in vitro data
and generated alignments across all taxa and excluded
all loci having missing data from any taxon. This
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resulted in 1145 individual alignments with a mean
length of 406 bp (+100 bp s.d.) per alignment, total-
ling 465 Kbp of sequence. Tracer showed that both
Bayesian analyses converged quickly, having effective
sample size (ESS) scores for log likelihood of
170 and 220. Because posterior probabilities for all
nodes were 1.0, AWTY (http://ceb.csit.fsu.edu/awty)
showed zero variance in the tree topology throughout

either run. Bayesian analysis of concatenated alignments
and species-tree analysis of 1145 independent gene his-
tories showed turtles to be the sister lineage of extant
archosaurs with complete support (figure 2). Removing
the snake, which had a very long branch, and re-running
all analyses did not change the results.

4. DISCUSSION
Genomic-scale phylogenetic analysis of 1145 nuclear
UCE loci agreed with most other molecular studies
[4–14], supporting a sister relationship between turtles
and archosaurs. We found no support for the turtles–
lepidosaur relationship predicted by the Ankylopoda
hypothesis [15] (figure 2). The combination of taxo-
nomic sampling, the genome-wide scale of the
sampling and the robust results obtained, regardless of
analytical method, indicates that the turtle–archosaur
relationship is unlikely to be caused by long-branch
attraction or other analytical artefacts.

Although our results corroborate earlier studies, many
of these studies did not include tuatara. Because tuatara
is an early-diverging lepidosaur, it is important to include
this taxon in studies of turtle evolution as it breaks
up the long-branch leading to squamates (figure 2b).
Of the studies including tuatara, two [6,11] found results
similar to this study, but both were based on a single
locus. The third study [5] was unable to produce a
well-resolved tree from four nuclear genes when the
authors included tuatara in the dataset. Our study is
the first to produce a well-resolved reptile tree that
includes the tuatara and multiple loci.

The discrepancy between our results showing a
strong turtle–archosaur relationship and microRNA
(miRNA) results, which showed a strong turtle–
lepidosaur relationship, may be due to several factors.
Lyson et al. [15] used the presence of four miRNA
gene families, detected among turtles and lepidosaurs
and undetected in the other taxa analysed, to support
the turtle–lepidosaur relationship. Because complete
genomes are unavailable for turtles, tuatara and crocodi-
lians, and because expressed miRNA data are lacking for
most reptiles, the authors collected miRNA sequences
from small RNA expression libraries. miRNAs have

Table 1. University of California Santa Cruz (UCSC) genome build or specimen ID for each sample, the number of
!100 bp sequence reads, and the total number of UCEs assembled.

common name binomial specimen ID/genome build reads assembled UCEs

African helmeted turtle Pelomedusa subrufa H20145a 11 200 032 1972
American alligator Alligator mississippiensis HCD-2620a 3 528 983 2320
Carolina anole Anolis carolinensis H16061a 3 100 147 2111d

corn snake Pantherophis guttata H15909a 3 362 738 2168
human Homo sapiens UCSC hg19 NA 1748
painted turtle Chrysemys picta H2662a 4 467 644 2261
red junglefowl Gallus gallus UCSC galGal3 NA 2360d

saltwater crocodile Crocodylus porosus LM-67b 3 261 088 2218
tuatara Sphenodon tuatara UMFS-10956c 5 651 932 2199
zebra finch Taeniopygia guttata UCSC taeGut1 NA 2345d

aFrom the LSU Museum of Natural Science.
bFrom the Darwin Crocodile Farm courtesy of L. Miles, S. Isberg and C. Moran.
cFrom the University of Michigan Museum of Zoology courtesy of R. Nussbaum and G. Schneider.
dAlthough we identified 2386 UCEs in these organisms, from which we designed capture probes, owing to slight adjustments to matching
and filtering algorithms, we only recover ca 98% of these UCEs when re-screening these genomic sequences.
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Figure 1. (a) Depicts the primary morphological hypotheses:
turtles most basally branching reptilian lineage [2]2 or turtles
related to lepidosaurs [3].1 (b) Depicts the primary molecular
hypothesis of a turtle–archosaur alliance [4–14]. (c) Depicts
the tree derived from miRNA loci [15].
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tissue and developmental-stage-specific expression pro-
files [25,26], which could make the detection of certain
miRNAs challenging. Because preparing and sequencing
libraries is a biased sampling process, the detection prob-
ability for specific targets is variable, and some miRNAs
are likely to be more easily detected than others. Thus,
failures to detect miRNA families are not equivalent to
the absence of miRNA families [27]. We suggest that at
least some of the four miRNA families currently thought
to be unique to lizards and turtles may be present but as
yet undiscovered in other reptiles.

This work is the first to investigate the placement of
turtles within reptiles using a genomic-scale analysis of
single-copy DNA sequences and a complete sampling
of the major relevant evolutionary lineages. Because
UCEs are conserved across most vertebrate groups
[20] and found in groups including yeast and insects
[19], our framework is generalizable beyond this study

and relevant to resolving ancient phylogenetic enigmas
throughout the tree of life [28]. This approach to high-
throughput phylogenomics—based on thousands of
loci—is likely to fundamentally change the way that
systematists gather and analyse data.

(a) Additional information
We provide all data and links to software via Dryad repo-
sitory (doi:10.5061/dryad.75nv22qj) and GenBank
(JQ868813–JQ885411).
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