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Abstract
Aim: Biotic interchanges between Africa, India, and Eurasia are central to explain-
ing the present-day distribution and diversity of freshwater organisms across these 
landmasses. Synbranchiformes is a diverse and species-rich clade of freshwater acan-
thomorph fishes found on all southern continents except Antarctica, and include eel- 
and perch-like, air-breathing and non-air-breathing fishes. Lacking a comprehensive 
and resolved phylogeny of the entire clade, contemporary interpretations of syn-
branchiform biogeography invoke scenarios as disparate as Gondwanan vicariance 
and pan-global rafting to explain their modern-day distribution. Here, we study their 
biogeographic history of continental dispersal events and test whether these are as-
sociated with increases in lineage diversification.
Location: Asia, India, Africa freshwater habitats.
Taxon: Synbranchiformes (gouramis, snakeheads, swamp eels, and relatives).
Methods: We used nearly 1000 ultra-conserved elements (UCEs) and Sanger-
sequenced genes to infer a phylogeny with representatives of all major synbranchi-
form lineages and nearly two-thirds of its known species diversity. Incorporating fossil 
calibrations, we inferred a time-calibrated phylogeny to which we apply Bayesian 
methods of ancestral area reconstruction and test for diversification rate shifts.
Results: Analyses of UCE data provide a resolved phylogeny for major synbranchi-
form lineages. Divergence times support a most recent common ancestor of the 
entire clade approximately 79.2 million years ago. We infer significant increases in 
lineage diversification in both the spiny eels (Mastacembelidae) and the genus Betta 
(Osphronemidae).
Main Conclusions: Our results reject the hypothesis of Gondwanan vicariance ex-
plaining synbranchiform biogeography. Instead, our analyses reconstruct a southeast 
Asian origin of the entire clade and independent dispersal events to other continents 
by snakeheads, anabantids, and spiny eels, with no signal of elevated lineage diversi-
fication occurring after these invasions. Higher lineage diversification rates in spiny 
eels pre-date their arrival to Africa, while the high diversification rates observed in 
Betta were initiated prior to the flooding of insular Sundaland in southeast Asia.
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1  |  INTRODUC TION

Freshwater fishes have served as models for studying biogeographic 
processes at nearly every spatial scale due to their limited ability to 
disperse outside of freshwater habitats and often narrow ecological 
niches within these environments (Olden et  al., 2010). Pairing the 
best available understanding of lineage relationship and their diver-
gence times with geographic distributions has been influential in for-
mulating hypotheses about the history and mechanisms driving fish 
faunal diversification. This approach is essential when considering 
lineages with widespread distributions across multiple continents 
(Capobianco & Friedman, 2019). Phylogeny represents a necessary 
component of historical biogeography as the framework for ana-
lysing geographic distributions. The proliferation of molecular data 
for phylogenetic analysis has drastically altered the resolution of 
the fish Tree of Life and provided a wealth of time-calibrated phy-
logenies that can be used to re-examine longstanding assumptions 
about freshwater fish biogeography (Dornburg & Near, 2021). For 
example, time-calibrated molecular phylogenies have both corrobo-
rated and contradicted long held assumptions of Gondwanan conti-
nental vicariance of lungfishes (Brownstein et al., 2023) and cichlids 
(Friedman et  al.,  2013; Matschiner et  al.,  2020), respectively. The 
rapidly emerging molecular phylogenetic perspective of fish sys-
tematics highlights the need to continuously reassess biogeographi-
cal hypotheses of the origins of freshwater fish diversity.

Synbranchiformes is a clade whose composition has recently 
changed as a result of molecular phylogenetic analyses. It is the only 
major clade (i.e., taxonomic Order) of Acanthomorpha that is com-
posed entirely of primary freshwater fishes and also has a nearly 
global distribution that can provide insight on continental patterns 
of biogeography (Betancur-R et al., 2013; Ghezelayagh et al., 2022; 
Near et al., 2013). The major lineages of Synbranchiformes are phe-
notypically diverse and include fishes that are perch-like (e.g., gour-
amis and snakeheads, Osphronemidae and Channidae, respectively, 
Figure  1b,d), eel-like (swamp eels and spiny eels, Synbranchidae 
and Mastacembelidae, respectively, Figure  1f,g), and armoured 
(Indostomus; Figure  1h). Synbranchiform species diversity is con-
centrated in Southeast Asia and India which contain over 60% of 
total species richness, with a secondary concentration of diversity 
in sub-Saharan Africa. Some lineages are regionally endemic, such 
as Betta (85 species) and Parosphromenus (20 species), both of which 
are distributed in the Sundaland region of tropical Southeast Asia. 
Anabantidae, Channidae, Mastacembelidae, and Synbranchidae 
are widely distributed in both Africa and Asia. Two lineages of 
Synbranchidae, Synbranchus and Ophisternon, are distributed in 
Central and South America (Figure 1). The geological history of the 
tropical regions of Asia and Africa, particularly the tectonic rear-
rangements of India and Africa relative to Asia, highlight the geo-
graphic distribution of Synbranchiformes as an interesting target for 
historical biogeography (Capobianco & Friedman, 2019).

Past considerations of synbranchiform biogeography involve 
three hypotheses: (1) ‘Out of India’ (Capobianco & Friedman, 2019; 
Chatterjee et al., 2013), (2) origination and dispersal from Southeast 

Asia (Darlington,  1957; Kosswig,  1955; Steinitz,  1954) and (3) 
Gondwanan vicariance (Britz,  1997; Britz et  al.,  2020). The latter 
hypothesis posits vicariance resulting from the fragmentation of 
Gondwana, while the former two propose dispersal from Asia to 
Africa and beyond from their respective centres of origin—either 
insular India as a ‘biotic ferry’ or from Southeast Asia (Capobianco 
& Friedman, 2019; Liem, 1963). All three hypotheses make explicit 
predictions about timing and historical distributions that can be 
evaluated from temporal estimates and biogeographic reconstruc-
tions (Table 1). Although these predictions are explicit, several syn-
branchiform traits suggest they may have elevated dispersal ability 
relative to other freshwater fishes, complicating the interpretation 
of these scenarios. These traits include their ability to tolerate 
hypoxic aquatic environments using a variety of adaptations for 
breathing air from the water's surface via air-breathing organs (Tate 
et al., 2017), and the ability of some species to traverse over land 
(Das, 1928; Duan et al., 2018; Hughes & Munshi, 1979; Ishimatsu & 
Itazawa, 1981).

The ecological opportunities that result from a lineage moving to 
a previously unoccupied area are hypothesized to increase lineage 
diversification (Simpson,  1953; Stroud & Losos,  2016). However, 
studies that quantify diversification rates around geographic colo-
nization events in island and continental settings suggest that this 
process needs to be studied on a case-by-case basis (Burbrink & 
Pyron, 2010; Harmon et al., 2008; Tran, 2014). The distribution of 
synbranchiform lineages across multiple continents poses historical 
biogeographical scenarios that may factor into variable lineage di-
versification dynamics, and understanding the role of biogeography 
in synbranchiform evolution is a critical step in assessing if dispersal 
to new areas was an important catalyst of their diversification.

Several studies have investigated the biogeographic history of 
individual clades within synbranchiforms—anabantids, channids, and 
mastacembelids in particular—but all make contrasting inferences 
regarding the origin and diversification of these lineages across the 
Palaeotropics (Britz et  al.,  2020; Lavoué,  2020; Wu et  al.,  2019). 
Reconstructing the evolutionary history of these lineages requires 
a perspective on the biogeography of Synbranchiformes as a whole, 
which could refine the biological consequences of important Earth 
history events including the collision of insular India with Asia, the 
uplift of the Tibetan plateau, and the inundation of Sundaland (Britz 
et al., 2020; Lavoué, 2020; Wu et al., 2019). Additionally, the propen-
sity for dispersal and invasion exhibited by members of some groups, 
like channids and synbranchids, raises questions about how shifting 
geographic distributions might have influenced the macroevolution-
ary history of certain lineages.

To address these questions, we generated a phylogeny using 
DNA sequence data collected from nearly 1000 ultraconserved ele-
ments (UCEs) that includes representatives from all major lineages of 
Synbranchiformes. We expanded the taxonomic coverage offered in 
the UCE-inferred phylogeny by combining our UCE dataset with data 
obtained from Genbank, resulting in a phylogeny of Synbranchiformes 
that includes 64% of the species in the clade. We used this expanded 
tree to estimate divergence times among lineages to: (1) reconstruct 
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    |  3HARRINGTON et al.

the biogeographic history of Synbranchiformes in relation to Earth his-
tory events and (2) explore whether any inferred regional invasions are 
coincident with changes to lineage diversification in Synbranchiformes.

2  |  MATERIAL S AND METHODS

2.1  |  UCE data generation and pipeline

We collected UCE sequence data from 124 species of Synbranchiformes 
and combined these with existing data from 35 acanthomorph out-
groups collected as part of previous studies (Friedman et  al.,  2019; 
Harrington et al., 2016). Museum voucher information and NCBI SRA 
accession numbers are listed in Table S1. We used protocols described 
in Alfaro et  al.  (2018) for DNA extraction, library preparation and 

enrichment, sequencing, and processing of sequence data. Detailed 
descriptions can be found in the Supporting Information.

2.2  |  Phylogenetic inference

The UCE matrix included 159 species and phylogenetic analyses 
utilized UCE alignments that included at least 120 taxa for each 
locus (75% taxonomically complete). We determined the optimal 
partitioning strategy for the UCE-only dataset using PartionFinder 
v 2.1.1 (Lanfear et al., 2017), under a relaxed clustering search algo-
rithm (Lanfear et al., 2014) with UCE loci treated as individual units 
for partitioning, and we used the Bayesian Information Criterion 
for model comparison and selection. We inferred a maximum likeli-
hood tree using IQ-Tree v 1.6.12. The tree search was conducted 

F I G U R E  1  Global range maps of major synbranchiform lineages. (a) climbing perches (Anabantidae), (b) gouramis, bettas, and pike 
gouramis (Osphronemidae), (c) Kissing Gourami (Helostoma), (d) snakeheads (Channidae), (e) Asian leaffishes (Nandidae), (f) swamp eels 
(Synbranchidae), (g) spiny eels (Mastacembelidae), (h) and armoured sticklebacks (Indostomus). Not pictured: earthworm eels (Chaudhuriidae). 
Images by Oliver Lucanus, Mark Sabaj, and Matt Kolmann.
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4  |    HARRINGTON et al.

with IQTree's ultrafast bootstrap approximation, optimized by near-
est neighbour interchange (Hoang et al., 2018), with 1000 bootstrap 
replicates and a GTR + G model of molecular evolution.

We inferred a coalescent-based species tree from UCE gene 
trees using ASTRAL v 4.11.1 (Zhang et  al.,  2018). Individual gene 
trees were inferred for each UCE locus that was at least 75% taxo-
nomically complete using IQ-Tree, employing IQ-Tree's implementa-
tion of ModelFinder, followed by an SH-like approximate likelihood 
ratio test tree search, with 1000 bootstrap replicates. The individual 
UCE locus gene trees were used as input for the ASTRAL coalescent 
species tree inference.

We estimated gene- and site-concordance factors in IQ-TREE 
2 to assess topological congruence across our dataset by compar-
ing the topology of individual gene trees to the topology inferred 
through concatenated analysis. The concordance analysis in IQ-
TREE 2 estimated the proportion of decisive individual UCE loci's 
gene trees (gCF) consistent with each branch in the phylogeny in-
ferred through concatenation of the 75% complete UCE-only matrix. 
Site concordance factors (sCF) were calculated for each branch in 
the phylogeny based on 100 randomly subsampled quartets from 
the 75% complete UCE-only concatenated alignment.

While the major lineages of Synbranchiformes were sampled in 
the UCE-only dataset, taxon sampling at the species level was not 
adequate to test biogeographic hypotheses. Therefore, we created 
a second, composite matrix that included taxa and data from the 
UCE-only data matrix as well as DNA sequences from four genes 
(cytb, COI, rag1, and snx33) obtained from Genbank, which added 
138 species of Synbranchiformes that were not represented in the 
UCE-only data matrix. Genbank accession numbers for these addi-
tional sequences are provided in Table  S1. We were able to com-
bine these two data sets because our target enriched UCE libraries 
usually contain DNA sequences from mitochondrial genomes. We 

used Phyluce to extract sequences of mitochondrial genes cytb and 
COI from sequenced libraries, and we aligned these sequences with 
those obtained from Genbank using MAFFT v 7.475. To investigate 
differences among topologies inferred from different loci, we in-
ferred individual gene trees for cytb, COI, rag1, and snx33 with IQ-
Tree, using IQ-Tree's ModelFinder command to obtain the optimal 
partitioning strategy within each gene by codon position, and then 
used an SH-like approximate likelihood ratio test tree search with 
1000 bootstrap replicates.

We also used Phyluce to build a concatenated data set con-
taining the UCE data, the mitochondrial gene sequences extracted 
from sequenced libraries, and the mitochondrial and nuclear data 
downloaded from Genbank (UCE-composite matrix). To reduce 
the amount of missing data in downstream phylogenetic analyses 
among the taxa from the UCE-only matrix, we included UCE loci 
that were at least 95% taxonomically complete. For analysis of the 
UCE-composite matrix, we attempted several partitioning strate-
gies, including: non-partitioned; full partitioning of the UCE portion 
of the matrix, with cytb, COI, rag1, and snx33 each given their own 
partition; and an analysis where cytb, COI, rag1, and snx33 were par-
titioned by codon position. While all partitioning strategies resulted 
in identical phylogenetic inferences with regards to the UCE-only 
dataset, the resolution of two species represented by only COI or 
cytb was variable in the trees resulting from analyses of different 
partitioning schemes of the Sanger sequenced loci (e.g., the position 
of Mastacembelus alboguttatus and the monophyly of Belontia).

2.3  |  Divergence time estimation

We used a node-based calibration strategy to estimate divergence 
times among species using BEAST v 2.5.2 (Bouckaert et  al.,  2019), 

TA B L E  1  Biogeographic hypotheses to explain the timing of lineage diversification in Synbranchiformes and present day distribution of 
the clade in Africa, Asia, and India.

Hypothesis Expectation: Synbranchiformes MRCA Expectation: Timing of trans-continental dispersal

Gondwana 
Vicariance

Synbranchiformes originated prior to breakup of Gondwana, 
>120 myaa

Synbranchiformes would arrive in Asia due to Indian-Asian 
contact, which should not take place prior to 55 mya, 
geologicallyb

‘India as Biotic 
Ferry’

Synbranchiformes originated in India. Geographic ranges for 
the MRCA of these lineages would be Indianc

Anabantidae and Channidae disperse to Africa and Asia 
between 55 and 35 mya via intermittent land bridge(s)d

‘Out of Southeast 
Asia’

Synbranchiformes originate in SE Asia during the Late 
Cretaceous (72–66 mya).e,f Dispersal events not linked to 
India, MRCA would be reconstructed as Asiane

Intermittent windows for dispersal from Laurasia to Africa, 
starting during the Eocenee (55–35 mya), Mioceneg 
(23–5 mya), and/or Plioceneh (5 mya)

Note: Hypotheses that apply to the Synbranchiformes most recent common ancestor (MRCA) and those specific to trans-continental dispersal are 
listed separately.
aBritz (1997), Britz et al. (2020).
bAli and Aitchinson (2008), Aitchinson et al. (2007).
cCapobianco and Friedman (2019); Ferry concept attributed to McKenna (1973) in Conti et al. (2002) and Karanth (2021).
dBriggs (2003).
eLiem (1963).
fDarlington (1957) in Liem (1963).
gSteinitz, (1954) in Liem (1963).
hKosswig (1955).
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    |  5HARRINGTON et al.

with a relaxed lognormal clock model and birth-death tree branching 
model. A detailed justification and description of the 22 fossil-based 
calibration priors is presented in the Supporting Information. We time-
calibrated both the UCE-only and UCE-composite tree topologies 
from IQ-Tree analysis of concatenated matrices. Due to computational 
limitations, we followed previous acanthomorph phylogenomic studies 
and conducted all divergence time analyses using subsets of randomly 
selected UCE loci (Friedman et al., 2019). For both UCE-only data set, 
we selected three subsets of 30 UCE loci, and for the UCE-composite 
data set, we selected three subsets of 30 UCE loci in addition to 
COI, cytb, and Rag1. Optimal partitioning schemes were estimated 
with PartitionFinder 2.1.1, under an rcluster heuristic search and 
GTR + Gamma model of evolution. UCE loci were treated as individual 
units for partitioning, and codon positions treated separately for the 
three protein-coding loci. After partitioning, we performed five repli-
cates of each analysis for 250 million generations, with a burn-in of 200 
million generations discarded from each BEAST analysis, resampling 
every 50,000 trees, and combining and annotating summary maximum 
clade credibility (MCC) trees in LogCombiner and TreeAnnotator, re-
spectively. Log files from each replicate analysis were viewed in Tracer 
1.7 (Rambaut et al., 2018) to confirm convergence of parameter es-
timates among runs and assess ESS values. Comparative analyses of 
biogeography and lineage diversification were performed on the MCC 
time-tree inferred on the UCE-composite matrix.

2.4  |  Model-based reconstruction of 
synbranchiform historical biogeography

We assigned current native geographic ranges to species based on 
distributional descriptions in FishBase species accounts (Froese & 
Pauly, 2022) using the following categories: Africa, India, Palearctic, 
Sundaland, Australia, and the Neotropics. We estimated ancestral 
ranges using the BioGeoBears v. 1.1.1 package (Dupin et al., 2017; 
Matzke, 2018) in the R v4.0.2 software platform. We applied sev-
eral models of range evolution, including dispersal-extinction-
cladogenesis (DEC) and BioGeoBears' likelihood interpretation of 
dispersal-vicariance (DIVA-Like) and BayArea (BayArea-Like) mod-
els (Landis et al., 2013). We also performed ancestral range recon-
structions using these models with an additional ‘jump’ dispersal 
parameter that allows for founder events at cladogenesis, that is, 
dispersal-mediated cladogenesis. To better reflect the likelihood of 
dispersal between continents that transition from being separated 
to connected at different times through the history of synbranchi-
form evolution, we implemented a time-stratified analysis in which 
a dispersal probability matrix was applied to three different time pe-
riods that reflect connectedness among landmasses over the past 
tens of millions of years (Aitchison et al., 2007; Ali & Aitchison, 2008; 
Chatterjee et  al.,  2017): prior to 55 Ma, before a direct land con-
nection between India and Asia; 55–30 Ma, corresponding to the 
duration of the India-Asia collision; and 30 Ma to the present, rep-
resenting an essentially modern configuration between Asia and 
the Indian Subcontinent. See Table S2 for a detailed dispersal matrix 

for each time partition. We selected the model best fitting the data 
using the Akaike Information Criterion (AIC).

2.5  |  Diversification analyses

We tested for shifts in lineage diversification rates in the evo-
lutionary history of Synbranchiformes using BAMM v2.5.0 
(Rabosky, 2014). This method uses a reversible-jump Markov chain 
Monte Carlo (rjMCMC) to quantify evolutionary rate heterogeneity. 
We inferred diversification rates using the ‘speciation-extinction’ 
setting in BAMM, which detects rate shifts along branches accord-
ing to a Poisson process. We ran MCMCs with four chains for 50 
million generations each, sampling every 5000 generations. We ac-
counted for incomplete taxon sampling by incorporating a sampling 
probability that considers the known global proportion of missing 
species from our phylogeny (including outgroups = 0.09), as well as 
genus-specific proportions of missing species. All priors were set as 
recommended by the ‘setBAMMpriors’ function in the BAMMtools 
package v2.1.7 (Rabosky et al., 2014), and we ran BAMM multiple 
times with the ‘expectedNumberOfShifts’ parameter set to 0.1, 1, 5, 
and 10. We used the coda package (Plummer et al., 2006) to evaluate 
convergence and examined the log-likelihoods of the MCMC output 
file to ensure that effective sample sizes (ESS) exceeded 200, after 
discarding 10% of posterior samples as burn-in. We determined the 
maximum a posteriori probability (MAP) shift configuration (the dis-
tinct shift configuration with the highest posterior probability) using 
the ‘getBestShiftConfiguration’ function and retained these results 
for further analyses.

BAMM has been criticized with respect to how non-global sam-
pling fractions may shift the position of regime changes, or obscure 
where these regime shifts actually occur (Moore et al., 2016), but 
see an alternative perspective in Rabosky et al.  (2017). Therefore, 
we also performed diversification analyses with MiSSE, a State-
dependent Speciation and Extinction (SSE) model in the R package 
hisse (Beaulieu & O'Meara, 2016). MiSSE provides a framework for 
inferring diversification, speciation, and extinction rate differences 
using hidden states alone, which can account for rate heterogeneity 
among clades. We ran MiSSE using 26 possible hidden rate configu-
rations, varying net turnover and holding extinction fraction consis-
tent across all models (eps = 1). We chose the model with the lowest 
AICc as the preferred scenario; however, MiSSE allows for model 
averaging among models with similar AIC scores, and this was used 
to account for subtle differences in the best-supported models.

3  |  RESULTS AND DISCUSSION

3.1  |  Summary of sequence data

A summary of data matrices used to perform phylogenetic and di-
vergence time analyses is provided in Table S3. Our sequencing ef-
forts produced a 75% complete matrix composed of 998 UCE loci, 
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6  |    HARRINGTON et al.

with a mean length of 614 bp and 276 parsimony informative sites 
per locus. The total length of the concatenated 75% complete matrix 
was 612,737 bp. The 95% complete matrix included 674 loci, with 
a mean of 656 bp length and 298 parsimony informative sites per 
locus, and a total concatenated length of 441,224 base pairs. The 
protein-coding mitochondrial loci COI and cytb alignments are 688 
and 1144 bp, respectively, and the nuclear rag1 and snx33 alignments 
are 1497 and 739 bp, respectively. The phylogeny inferred from the 
UCE-composite dataset is shown in Figures 2 and 3. Figures in the 
Supporting Information include the tree inferred from the UCE-only 
dataset (Figure S1), the phylogeny inferred from the UCE-composite 
dataset that includes all sampled species (Figure  S2), the ASTRAL 
coalescent-based tree (Figure S3), and the gene trees inferred from 
COI, cytb, rag1, and snx3 (Figures S4–S7, respectively).

3.2  |  Phylogeny of Synbranchiformes

Prior to the use of molecular data to investigate the phylogenet-
ics of acanthomorph fishes, studies of morphology suggested a 
close relationship among the lineages that comprise Anabantoidei 
and Synbranchoidei (Berg,  1940; Lauder & Liem,  1983; Rosen & 
Patterson, 1990). Molecular phylogenetic analyses consistently re-
solve Synbranchiformes as monophyletic (Betancur-R et  al.,  2013; 
Chen et  al.,  2003; Hughes et  al.,  2018; Li et  al.,  2009; Near 
et al., 2013; Wainwright et al., 2012). The phylogenetic analyses of 
the UCE-only and UCE-composite datasets support the monophyly 
of Synbranchiformes and two major subclades: the Synbranchoidei 
containing Indostomus, Synbranchidae, Chaudhuriidae, and 
Mastacembelidae and Anabantoidei containing Nandidae, 
Channidae, Anabantidae, Helostoma temminckii, and Osphronemidae 
(Figures  2, 3 and S1). We delimit Nandidae as containing species 
of Nandus, Badis, Dario, and Pristolepis (Figure  2). Alternatively, 
these four genera are classified into three taxonomic families, two 
of which contain a single genus (Betancur-R et  al.,  2017; Nelson 
et al., 2016, pp. 394–395). Our delimitation of Nandidae is reflected 
in previous classifications (Nelson, 2006, pp. 381–383) and is con-
sistently resolved in molecular phylogenetic analyses and supported 
with morphological apomorphies (Collins et al., 2015; Ghezelayagh 
et al., 2022; Near et al., 2013). The relationships among major sub-
clades and species in the phylogenies inferred from UCE-only and 
UCE-composite datasets are broadly congruent (Figures 2, 3, S1 and 
S2). The UCE-based molecular phylogenies have high node support 
values in both concatenated and coalescent-based analyses indicat-
ing that they are characterized by high levels of agreement among 
individual UCE gene trees (Figures S1 and S3).

Within the Synbranchoidei, the phylogenies inferred using 
the UCE-only and UCE-composite matrices resolve two clades, 
one containing Indostomus and Synbranchidae and the other 
with Chaudhuriidae and Mastacembelidae (Figures  2, S1, and 
S2). While studies of morphology suggested a relationship 
among Mastacembelidae, Chaudhuriidae, and Synbranchidae 
(Gosline,  1983; McAllister,  1968), ours is the first molecular 

phylogenetic study to resolve Chaudhuriidae and Mastacembelidae 
as sister taxa. Several morphological traits have been hypothe-
sized to represent synapomorphies that support the resolution of 
Sinobdella in Mastacembelidae (Britz, 1996; Kottelat & Lim, 1994), 
which is supported in the UCE-composite molecular phylogeny 
(Figures 2 and S2). Our results are congruent with all previous mo-
lecular phylogenetic studies of Synbranchoidei, although these stud-
ies did not include either Indostomus or Chaudhuriidae (Betancur-R 
et al., 2013; Hughes et al., 2018; Near et al., 2013). In contrast to 
conclusions based on morphology (Rosen & Greenwood, 1976), the 
UCE phylogeny resolves the synbranchid lineage Ophisternon as 
paraphyletic relative to a clade containing two Neotropical species, 
Synbranchus marmoratus and O. aenigmaticum (Figures 2 and S2).

Phylogenetic analyses of the UCE-only and UCE-composite 
matrices resolve Macrognathus and Mastacembelus as reciprocally 
monophyletic sister lineages (Figures  2 and S1). Previous molecu-
lar phylogenetic studies of relationships within Mastacembelidae 
densely sampled African species but included a sparse sampling of 
Asian species as outgroups (Alter et al., 2015; Brown et al., 2010; 
Day et  al.,  2017). Where the species-level sampling overlaps, the 
relationships among major species groups and their composition in-
ferred from the UCE-only and UCE-composite matrices are broadly 
congruent with the phylogenies inferred in Day et al. (2017).

The UCE-inferred phylogeny of Synbranchiformes (Figure  3) 
is congruent with previous morphological analyses in resolving a 
clade that contains lineages with the labyrinth-organ: Helostoma, 
Anabantidae, and Osphronemidae (Britz, 1994). Most incongruence 
among previous phylogenetic hypotheses is due to the variable 
resolution of Channidae as either the sister group of the labyrinth-
organ clade (Britz et al., 2020; Hughes et al., 2018; Near et al., 2013; 
Sanciangco et al., 2016; Springer & Johnson, 2004; Wu et al., 2019) 
or Nandidae (Betancur-R et al., 2013), and Helostoma as either the 
sister taxon of Anabantidae (Britz et al., 2020; Collins et al., 2015; 
Hughes et al., 2018), Osphronemidae (Betancur-R et al., 2013; Near 
et al., 2013; Rüber et al., 2006; Sanciangco et al., 2016), or a clade con-
taining Anabantidae and Osphronemidae (Collins et al., 2015). The 
phylogenies resulting from analysis of all concatenated datasets re-
solve Channidae (which also has a labyrinth-like air-breathing organ) 
as the sister taxon of the labyrinth-organ clade, and Helostoma as the 
sister taxon of a clade comprising Anabantidae and Osphronemidae 
(Figures 3 and S1).

Phylogenetic relationships among genera and among species 
groups within genera of Anabantoidei inferred from the UCE-only 
and UCE-composite matrices are mostly congruent with those found 
in previous analyses based on smaller numbers of loci (Adamson 
et  al.,  2010; Britz et  al.,  2020; Li et  al.,  2006; Rüber et  al.,  2006, 
2020; Rüber, Britz, Kullander, & Zardoya,  2004; Rüber, Britz, Tan, 
et al., 2004); however, there remain several differences worth noting. 
Within Anabantidae, the UCE phylogeny places Sandelia as the sister 
taxon to a clade containing Ctenopoma and Microctenopoma, where 
Ctenopoma is paraphyletic relative to Microctenopoma (Figure 2). The 
concatenated and coalescent-based UCE-inferred phylogenies re-
solve Belontia as the sister taxon to all lineages of Osphronemidae 
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    |  7HARRINGTON et al.

(Figures 3 and S1), as opposed to Belontia and Osphronemus as sis-
ter taxa in phylogenies resulting from analyses of Sanger-sequenced 
mtDNA and nuclear genes (Rüber et al., 2006; Wu et al., 2019). Our 
study confidently (100% UF bootstrap support in concatenated 
analysis; local posterior probability support of 1.0 in ASTRAL anal-
yses of UCE-only matrices) confirms pike gouramies (Luciocephalus) 
and Sphaerichthys are sister taxa (Figure  3), and nested within 
Osphronemidae (Britz et  al.,  1995; Rüber et  al., 2006), in contrast 
to a taxonomic classification of Luciocephalus in a monotypic sub-
family or suborder (Berg, 1940; Lauder & Liem, 1981; Liem, 1965, 
1967). The morphological characters that once misled analyses of 

the phylogenetic affinity of Luciocephalus (e.g., lack of parasphenoid 
teeth, reduced labyrinth organ) instead can be interpreted as losses 
or reductions following adaptations for piscivory.

Within Channidae, the phylogeny inferred from the UCE-
composite dataset resolves Parachanna as the sister taxon of a clade 
comprising Aenigmachanna and Channa (Figure 3). In contrast, phy-
logenetic analysis of morphological data resolved Aenigmachanna as 
sister to a clade containing Parachanna and Channa (Britz et al., 2020). 
Molecular analyses presented by Britz et al. (2020) were conducted 
using a topological constraint to reflect the results of the phylogeny 
resulting from analysis of morphological characters. Phylogenetic 

F I G U R E  2  Time-calibrated phylogeny and biogeographic history of Synbranchiformes based on BEAST analysis of UCE loci combined 
with cytb, COI, and rag1. Horizontal bars indicate 95% HPD of age estimates for each node. Ultrafast bootstrap support (UFBoot) values 
are represented as discs on each node. Black discs indicate UFBoot of between 95 and lower than 100, grey indicating 75 to 95, and white 
indicating UFBoot values lower than 75. Nodes without a disc indicate UFBoot support of 100. Geographic distributions of extant species 
are coded to the right of each species name. Biogeographical reconstructions of ancestral ranges inferred analysis in BioGeoBears under a 
DEC + J model are shown in pie charts adjacent to each node. Phylogeny continues on Figure 3.
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analyses of the individual loci used in Britz et al. (2020) result in in-
congruent topologies regarding the placement of Aenigmachanna 
relative to other synbranchiform lineages (Figures  S4–S7). Our 
molecular phylogenetic results do not support the placement of 
Aenigmachanna as the sister taxon of the clade comprising Channa 
and Parachanna (Figure  3). Even if Aenigmachanna represents the 
sister taxon of the clade containing Channa and Parachanna, it would 
still be most effectively classified in Channidae. The description of 
a monogeneric Aenigmachannidae provides no information on phy-
logeny and only accomplishes creating a group name that is redun-
dant with Aenigmachanna. The limited number of loci sequenced 
for Aenigmachanna and the discordant or unresolved relationships 
inferred from these loci highlight the need for additional sequence 
data in order to resolve the relationships among Aenigmachanna, 
Channa, and Parachanna.

3.3  |  Timing and geographic context of 
diversification

Divergence times estimated across replicate, fossil-calibrated re-
laxed clock analyses of UCE-only (Figure  S8) and UCE-composite 
data matrices (Figures 2 and 3) converged on similar age estimates, 
with overlapping 95% highest posterior densities for ages at most 
nodes (Table  2). Here, we discuss specific dates obtained from an 
analysis of a sequence matrix that includes UCE loci, COI, cytb, and 
rag1. The BEAST analyses estimated the age of the most recent com-
mon ancestor (MRCA) of Synbranchiformes as 79.2 Ma [95% HPD: 
70.8–88.5 Ma] during the Late Cretaceous. The ages of the MRCAs 
of Synbranchoidei and Anabantoidei are estimated as 69.7 Ma 
[95% HPD: 58.1–79.7 Ma] and 72.1 Ma [95% HPD: 63.2–80.4 Ma], 
respectively (Figures  2, 3, and S2). The age estimates for lineages 
within both Synbranchoidei and Anabantoidei are similar to those 
resulting from other relaxed molecular clock analyses (Betancur-R 
et al., 2013; Hughes et al., 2018; Near et al., 2013), and these age 
estimates pre-date the hypothesized Eocene timing of initial contact 
between the Indian and Asian tectonic plates (Ali & Aitchison, 2008; 
Meng et al., 2012). Most major lineages of Synbranchiformes classi-
fied as taxonomic families began to diversify within the Palaeocene 
and early Eocene (Figures  2 and 3). Mastacembelidae, one of the 
most species-rich lineages of Synbranchiformes (93 species), has a 
relatively younger crown age of 32.6 Ma [95% HPD: 24.2–43.2 Ma].

The biogeographic setting and processes that shaped the 
present-day distribution of Synbranchiformes have previously been 
investigated with time-calibrated phylogenies to reconstruct ances-
tral geographic ranges (Lavoué,  2020; Wu et  al.,  2019). However, 

these were predominately focused on lower taxonomic levels, for 
example, the biogeographic history of the Channidae and the tim-
ing of the divergence between African and Asian lineages (Britz 
et al., 2020; Rüber et al., 2020). These studies estimated age esti-
mates broadly congruent with ours, but lacked comprehensive in-
clusion of both Synbranchoidei and Anabantoidei that would permit 
robust inferences regarding the geographic context of the most an-
cient divergences among the living lineages of Synbranchiformes.

AIC comparison of all tested models of geographic range evo-
lution of Synbranchiformes favoured the DEC + J model, and we 
discuss details of biogeographic history inferred under this model 
(Table 3). The DEC + J reconstruction of ancestral geographic ranges 
in Synbranchiformes strongly support a Southeast Asian origin for 
both Synbranchoidei and Anabantoidei (Figure  2). This model also 
inferred strong likelihood support for Southeast Asian origins of all 
major lineages of Synbranchiformes and indicated strong support 
for independent Asia-to-Africa dispersal events within Anabantidae, 
Channidae, and Mastacembelidae (Figures  2 and 3). This conclu-
sion contrasts with a previous historical biogeographic reconstruc-
tion that had equivocal likelihood support for the deepest nodes in 
Anabantoidei, and indicated higher likelihood of an Indian origin for 
Channidae (Wu et al., 2019). More precise constraints on the timing 
of these Asia-Africa dispersal events are limited by the long stems 
subtending the African lineages of Anabantidae and Channidae. 
The estimated crown ages for Anabantidae and Channidae are 45.7 
and 53.3 Ma, respectively (Figure 3), suggesting an earliest possible 
dispersal event in the early- to mid-Eocene. In contrast, the African 
clade of Mastacembelus has an estimated MRCA of 12.7 Ma, and the 
MRCA of this African clade and its sister lineage (M. mastacembelus, 
a species distributed in the Middle East) is 13.6 Ma (Figure 2), sup-
porting a dispersal event between 16.9 to 10.2 Ma. The mean timing 
of this dispersal event is slightly younger than that estimated by Day 
et al. (2017), but within overlapping 95% HPD of the posterior age 
estimates.

3.4  |  Timeline for the origin of  
Synbranchiformes and implications for their 
biogeography

Our findings are inconsistent with the Gondwanan vicariance model 
in terms of timescale and reconstructed ancestral distribution. We 
infer the last common ancestor of Synbranchiformes originated in 
Southeast Asia 79.2 [95% HPD: 70.8–88.5] million years ago. The 
older bound of this estimate substantially postdates the initial rifting 
of Gondwana that took place beginning in the early-mid Mesozoic, 

F I G U R E  3  Time-calibrated phylogeny (continued from Figure 2) and biogeographic history of Synbranchiformes based on BEAST analysis 
of UCE loci combined with cytb, COI, and rag1. Horizontal bars indicate 95% HPD of age estimates for each node. Ultrafast bootstrap 
support (UFBoot) values are represented as discs on each node. Black discs indicate UFBoot of between 95 and lower than 100, grey 
indicating 75 to 95, and white indicating UFBoot values lower than 75. Nodes without a disc indicate UFBoot support of 100. Geographic 
distributions of extant species are coded to the right of each species name. Biogeographical reconstructions of ancestral ranges inferred 
analysis in BioGeoBears under a DEC + J model are shown in pie charts adjacent to each node.
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tens of millions of years earlier (Ali & Aitchison,  2008; Matthews 
et al., 2016). Instead, Southeast Asia is the reconstructed ancestral 
distribution for every node in phylogeny of Synbranchiformes that is 
older than the Eocene (Figures 2 and 3).

The remaining two hypotheses assume deep-time invasions 
from their points of origin, either India or Asia. The ‘Out of India’ 
hypothesis proposes sporadic biotic connections between India 
and Africa during the northward tectonic movement of India to-
ward Asia (Briggs, 2003; Chatterjee et al., 2013, 2017; Chatterjee & 
Scotese, 2010), either in the form of land bridges (e.g., the Somali pen-
insula; Chatterjee & Scotese, 2010) or island-hopping (Briggs, 1989, 
2003; Rage, 2003). However, geological evidence for the existence 
of these land bridges has been called into question (Aitchison 
et al., 2007; Ali & Aitchison, 2004, 2008). Our results suggest that 
no lineages of Synbranchiformes were present in freshwater habi-
tats of the Indian subcontinent until the Eocene (Figures 2 and 3), 
corresponding to the earliest unambiguous fossil channid remains 
from the middle Eocene of Pakistan (Murray & Thewissen,  2008). 
The Asian origin hypothesis assumes dispersal of anabantoids via 
sporadic land connections between Eurasia and Africa through what 
is now the Middle East (Darlington,  1957, p. 101; Kosswig,  1955; 
Liem, 1963, pp. 61–65; Steinitz, 1954). Liem  (1963, pp. 61–65) hy-
pothesized an Eocene age for Asian-African faunal interchange, 
whereas Steinitz  (1954) and Kosswig  (1955) proposed exchanges 
during the Miocene and Pliocene, respectively. Our results support 
the ‘Out of Asia’ scenario, given the reconstructed ancestral ranges 
of all major synbranchiform lineages is Southeast Asia and that 
dispersal events to other continents occur only at the culmination 
of India's collision with Asia. While synbranchiforms likely did not 
evolve on insular India, these results suggest that the uplift of the 
Tibetan plateau may have isolated some lineages (e.g., Macropodus, 
Sinobdella) while facilitating the spread of others (snakeheads, climb-
ing perches (Wu et al., 2019)).

The historical biogeographic reconstructions infer three sepa-
rate dispersals to Africa by lineages within Channidae, Anabantidae, 
and Mastacembelidae (Figures  2 and 3). The African arrival of 
Mastacembelus is estimated to have occurred during the Miocene. 
The African lineage of Anabantidae dates at least to the Oligocene, 
sharing a common ancestor with the pan-Asian Anabas that dates to 
the Eocene (Figure 3). The MRCA of Parachanna, which represents 

the African lineage of Channidae, dates to the Miocene, but fossil ev-
idence indicates dispersal to Africa no later than the early Oligocene 
(Murray, 2012). The dispersal to Africa from Asia occurred in at least 
two waves, with lineages of Channidae and Anabantidae arriving 
in the Palaeogene, and mastacembelids arriving in the Neogene 
(Brown et al., 2010). A late Eocene invasion of Africa from Laurasia 
has also been noted for various mammal and reptile lineages based 
on fossil data (Gheerbrant & Rage, 2006). These invasions of Africa 
are reconstructed as unidirectional for each lineage (Figure 3), with 
no evidence of returns to Eurasia from Africa. The fossil record in-
dicates that channids were found as far north and west as southern 
Germany during the middle Miocene, coincident with the presence of 
other African freshwater fishes in southern France (Gaudant, 2015; 
Gaudant & Reichenbacher, 1998). Interestingly, the arrival of chan-
nids in Europe and deeper within continental Asia coincides with the 
extirpation of their possible ecological analogues, bowfins (Amiidae), 
which are now found only in North America but are present in the 
central Asian and European fossil record until the Oligocene, with 
less definitive evidence from the Miocene (Grande & Bemis, 1998).

The most prodigious example of dispersal among living lin-
eages of Synbranchiformes is the near global distribution of 
swamp eels (Synbranchidae), which occupy all southern conti-
nents except Antarctica (Figures 1 and 2). Like all other lineages of 
Synbranchiformes, Synbranchidae and the MRCA of Indostomus and 
Synbranchidae are inferred to originate in Southeast Asia (Figure 2). 
The estimated age of Synbranchidae is 51.4 Ma [95% HPD: 41.5–
62.6 Ma], reaffirming that their present-day distribution could not 
result from Gondwanan vicariance, as this date is well after the 
break-up of Gondwana. Although our findings show that South and 
Central American swamp eels are nested within wide-ranging taxa 
from Southeast Asia, New Guinea, and Northern Australia, the abil-
ity to interpret these biogeographical patterns is restricted by the 
absence of African synbranchids in our dataset. If swamp eels in-
vaded Africa from Asia, as did lineages of Channidae, Anabantidae, 
this may have occurred during the Eocene. This scenario seems more 
probable given the age of synbranchid lineages, relative to more re-
cent African arrivals like Mastacembelidae (Figure  2). The salinity 
tolerance, air-breathing ability, and fossoriality of swamp eels could 
make them capable rafters in large aquatic debris like tree trunks 
(Houle, 1998).

3.5  |  Lineage diversification after continental  
invasion

Estimates of lineage diversification suggest that no shifts in diver-
sification rates were concurrent with reconstructed continental 
invasions (Figures  2–4). Our analyses identified nine out of 192 
rate shift configurations which together comprise 51% of the cu-
mulative probability. In all nine of these configurations, there is a 
rate shift at the MRCA of the clade containing Mastacembelus and 
Macrognathus, with another shift observed eight of nine times near 
the MRCA of Betta and sometimes including the MRCA of the clade 

TA B L E  3  Number of parameters, log likelihood, AIC and AIC 
weight results for each model of geographic history tested in 
BioGeoBears.

Model
Number 
Parameters LnL AIC AIC wt

DEC + J 3 −189.8 385.6 1

DEC 2 −204.2 412.4 <0.0001

DIVALIKE + J 3 −205.5 417.0 <0.0001

DIVALIKE 2 −213.1 430.1 <0.0001

BAYAREALIKE + J 3 −218.8 443.6 <0.0001

BAYAREALIKE 2 −260.3 524.6 <0.0001
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12  |    HARRINGTON et al.

F I G U R E  4  Lineage diversification analyses of Synbranchiformes. (a) BAMM, (b) MiSSE. Significant increases in diversification rates are 
noted in mastacembelids (sans Sinobdella) and the genus Betta (and sometimes its sister clade, Parosphromenus). Black boxes highlight clades 
of interest.
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containing Betta, Parosphromenus, and Trichopsis (Figure 4). According 
to the BAMM analyses, the clade containing Mastacembelus and 
Macrognathus (0.167 species per million years) exhibits a rate of line-
age diversification that is nearly 2.5 times higher than other lineages 
of Synbranchoidei (0.068 species per million years), while the clade 
containing Betta, Parosphromenus and Trichopsis (0.109 species per 
million years) exhibits rates of lineage diversification that are more 
than 1.5 times higher than all Osphronemidae (0.072 species per 
million years). No configurations were favoured in BAMM where 
there are zero rate shifts across the time-calibrated phylogeny of 
Synbranchiformes (Figure 4). MiSSE results largely corroborated el-
evated diversification rates in the clade containing Mastacembelus 
and Macrognathus, as well as the Betta clade. However, MiSSE did 
not extend elevated rates of lineage diversification beyond Betta, 
to include Parosphromenus and Trichopsis, as did BAMM analyses 
(Figure 4).

The significant shift towards higher diversification rates within 
spiny eels (Mastacembelidae) occurs after the origin of the crown 
clade (MRCA of 32 Ma) and to the exclusion of the monotypic 
Sinobdella. The clade containing Macrognathus and Mastacemblus, 
which is distributed throughout Southeast Asia, India, and Africa, 
is characterized by a higher rate of lineage diversification than 
all other synbranchiform clades, apart from Betta (Figure  4). The 
estimated MRCA of the Mastacembelus + Macrognathus clade is 
21.5 Ma [95% HPD: 17.0–26.9 Ma], and this shift to a high diversi-
fication rate precedes both the radiation of Mastacembelus in Lake 
Tanganyika and, more generally, the arrival of spiny eels in Africa 
(Figure  2). Understanding modern spiny eel diversity requires a 
closer look at the origins of mastacembelids in Asia and their con-
tinental movements from Southeast Asia into the Middle East and 
then into Africa.

The estimated age of the MRCA of Betta is 33.2 Ma [95% HPD: 
26.9–44.7 Ma] near the Eocene–Oligocene boundary (ca. 34 Ma) and 
the estimated ages of the MRCAs of most of the sampled species 
range between 10 and 1.5 My (Figure 3), suggesting their diversifi-
cation was not the result of Pleistocene events such as glacial cycles 
and sea level rise (Sholihah, Delrieu-Trottin, Condamine, et al., 2021; 
Sholihah, Delrieu-Trottin, Sukmono, et  al.,  2021). Elevated diversi-
fication in Betta might be a consequence of their limited capacity 
for dispersal, preferences for acidic waters and peat swamps, and 
the presumably extreme habitat fragmentation promoted by these 
narrow niche requirements. Sexual selection, arising from the con-
spicuously complex mating systems in Betta as well as the closely 
related Parosphromenus and Trichopsis, might also be responsible 
for catalysing high speciation in these fishes (Rüber, Britz, Tan, 
et al., 2004). Similar mating behaviours like mouth brooding or nest-
ing, sexual display, and male combat are thought to contribute to 
high net diversification identified in cichlid fishes (Lande et al., 2001; 
Seehausen, 2000).

Extrinsic factors, like the repeated marine inundation and vol-
atile geological history of Sundaland over the past 30 million years 
likely shaped the evolutionary history of Betta (Beamish et al., 2003; 
Hui & Ng,  2005a, 2005b). Different portions of Sundaland have 

been periodically covered by shallow marine waters several times 
during the last 30 million years, with the latest inundation occurring 
14,000 years ago (Sholihah, Delrieu-Trottin, Condamine, et al., 2021). 
However, pre-Pleistocene geological activities are more likely to 
have shaped the modern diversity of Betta than recent island vicari-
ance (Sholihah, Delrieu-Trottin, Sukmono, et  al.,  2021). This com-
plicated geological history may explain why there is conspicuously 
higher diversity of Betta in areas of insular Sundaland that include 
Java, Borneo, and Sumatra than on mainland Sundaland or the Indo-
Burma region (Kowasupat et al., 2012; Schindler & Schmidt, 2009).

4  |  CONCLUSIONS

The Synbranchiformes are a unique example of a major Order-level 
clade of acanthomorph teleosts that are entirely freshwater. The phy-
logenomic analyses we conducted resolve the relationships among 
the major lineages of Synbranchiformes. The phylogeny we inferred 
allows for a new delimitation where Badidae and Pristolepididae are 
treated as synonyms of Nandidae, and Aenigmachannidae is iden-
tified as a synonym of Channidae. Despite competing hypotheses 
to explain the biogeographic history of Synbranchiformes, model-
based reconstructions strongly support a southeastern Asian origin 
followed by a dispersal to India, the Middle East, Africa, and beyond. 
Moreover, these continental invasions, particularly into Africa, oc-
curred in multiple waves that started during the Palaeogene and 
Neogene. Analysis of lineage diversification detected no pattern 
indicative of continental invasions precipitating shifts in lineage 
diversification rates.
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