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    Chapter 3   
 Targeted DNA Region Re-sequencing                     

       Karolina     Heyduk      ,     Jessica     D.     Stephens      ,     Brant     C.     Faircloth     , 
and     Travis     C.     Glenn    

3.1            Different Types of Re-sequencing Methodologies 

 Multiple re-sequencing  approaches   have been developed and reviewed (McCormack 
et al.  2013a ; Lemmon and Lemmon  2013 ). Below, we briefl y summarize the major 
re-sequencing methods, indicating  their   advantages and disadvantages (Table  3.1 ) 
and the scale at which they are most appropriate (Fig.  3.1 ). For all methods, we 
assume that sequencing coverage will be reasonably deep to achieve  high   accuracy 
(Table  3.2 ), especially at heterozygous sites. All methods are usually paired with 
DNA sequence tags (also known as barcodes, indexes, or molecular identifi ers, 
MID tags; see Faircloth and Glenn  2012 ) to identify individual samples from a pool 
of samples. We assume that lower costs will increase how widely the techniques 
will be adopted, and that total costs of ≤$100 US/sample, including personnel costs, 
are highly desirable.
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3.1.1         Whole Genome Re-sequencing 

    Whole genome re-sequencing (WGRS)   is  the   easiest method to implement in the 
lab, offers the most complete data, and has excellent software support due to its 
widespread use in human genomics (for a review of software, see Bao et al.  2011 ). 
While WGRS studies are being published in nonhuman systems, these are mostly 
limited to agriculturally important crops (rice, Xu et al.  2010 ; soybean, Li et al. 
 2013 ) or model organisms ( Arabidopsis ,   www.1001genomes.org    ;  Mus , Keane et al. 
 2011 ;  Drosophila , Zhu et al.  2012 ). The lack of WGRS studies are due to the inher-
ent problems associated with WGRS; these include (1) a required reference genome 
from the same or a closely related species, (2) the amount of sequencing is directly 
proportional to genome size (i.e., big genomes require a lot of sequencing), and (3) 
computational efforts increase as a power function of genome size (i.e., large 
genomes require much more computational effort than small ones)—all of which 
increase costs. As of 2015, it is possible to re-sequence a human genome at 30× 
coverage for ~$1000 on Illumina HiSeq 4000s (  www.illumina.com    ). Thus, it is pos-
sible to sequence  Drosophila -sized genomes for a cost approaching $100/sample, 
but most other non-model and large-genome organisms remain uneconomical for 
WGRS efforts  .  

3.1.2     Transcriptome Sequencing 

    Transcriptome sequencing (RNA-seq)   has the advantage of using the cellular 
transcriptional machinery to naturally reduce the complexity of genomes and enrich 
for functional elements. There are multiple advantages of focusing on genome 
reduction through transcriptomics. For example, transcript profi les for polymor-
phism comparisons are predicted to be similar if using the same tissue across 
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  Fig. 3.1    Methods for re-sequencing based on number of individuals and loci for analyses       
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individuals or species. There are large-scale initiatives attempting just that through 
a consortium of universities (plants, 1KP project,   http://www.onekp.com    ; insects, 
1KITE,   http://www.1kite.org    ; eukaryote microbes, Marine Microbial Eukaryote 
Transcriptome Sequencing Project,   http://www.marinemicroeukaroytes.org    ). 
Another benefi t of transcriptome sequencing is that the assembled template can be 
used to develop markers for future studies (Ekblom and Galindo  2011 ). 

 RNA-seq has several disadvantages. First, differences in gene expression will 
vary depending on which tissues are collected, developmental stage of tissue, time 
of day, and nutritional status of individuals; this can limit comparison of ortholo-
gous loci across samples. Variation between libraries can be mitigated, however, by 
pooling several life stages, tissues, etc. during cDNA library preparation (Hahn 
et al.  2009 ). Second, RNA-seq requires signifi cant sequencing depth to account for 
loci that are weakly expressed. Third, models relating to demographic history  and 
  population structure generally assume neutral evolutionary processes, which may 
be violated by transcribed genes and thus may cause problems with downstream 
analyses for these types of studies. Finally, RNA-seq currently costs one to a few 
hundred dollars per sample; thus, sampling a large number of individuals and spe-
cies can be costly for reagents and sequencing and can increase computational time 
requirements for transcriptome assembly and subsequent analysis   (Wang et al. 
 2009 ; Ozsolak and Milos  2011 ).  

3.1.3     PCR Amplicon Sequencing 

  PCR can be used to  produce   amplicons that are sequenced using MPS. This has 
most frequently been done for 16S metagenomics (Wang and Qian  2009 ; Haas et al. 
 2011 ) and specifi c disease panels (Easton et al.  2015 ), but many other applications 
of this technique have been developed (Faircloth and Glenn  2012 ). Amplicon 
sequencing has the advantage of working from very limited amounts of starting 
material, building on well-known techniques, and can be done for well under $100 
US per sample if the number of target loci is limited. The major disadvantages of 
amplicon sequencing are that (1) costs increase signifi cantly as the number of target 
loci increases, (2) amplicons generally need to be combined with other samples to 
increase sequence diversity on Illumina platforms and to take advantage of capacity, 
and (3) assay development time and costs increase signifi cantly as the number of 
target loci increases; thus, amplicon sequencing is generally limited to surveying 
only a very small portion of the genome .  

3.1.4     Restriction-Site-Associated DNA Makers (RADseq) 

   RADseq uses restriction enzymes  to   reduce genome complexity and isolate a 
smaller, repeatable fraction of the genome and is combined with MPS to genotype 
thousands of genetic markers without having prior genetic information for the 
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organism(s) under study. Multiple fl avors of RADseq have been developed, making 
use of one, two, three, or more restriction enzymes (Davey et al.  2011 ; Puritz et al. 
 2014 ). The method used is often selected based on the genome size of the organism 
and the predicted amount of coverage resulting from the enzyme combination 
selected. RADseq was developed for and has been extensively utilized for questions 
pertaining to genetic mapping and population genomics (Davey et al.  2011 ; Puritz 
et al.  2014 ). RADseq data have also been used for phylogenetic assessments (Rubin 
et al.  2012 ; Cariou et al.  2013 ; Wagner et al.  2013 ), but these are often in small, 
species-level phylogenies. A major advantage of RADseq is that discovery, devel-
opment, and screening of markers generally happens in only one or two rounds of 
MPS, making RADseq time effi cient and cost-effective (Davey and Blaxter  2010 ). 
In addition, there are well-developed downstream bioinformatics pipelines to 
handle these data (e.g., Stacks—Catchen et al.  2013 ; PyRAD—Eaton  2014 ). 
Although RADseq is ineffi cient in its use of MPS data (i.e., most data are dis-
carded), because MPS data are cheap, most RADseq projects still achieve costs well 
below $100 US/sample. Thus, RADseq represents a generally reasonable approach 
for acquiring genotype information dispersed across large genomes. 

 Unfortunately, RADseq also suffers from several disadvantages. First, RADseq 
loci are untargeted (i.e., any fragment of DNA with the restriction site(s) will be 
obtained). Thus, the loci may be less evenly spread across a genome than desired 
and may miss important portions simply due to chance or bias (Davey et al.  2013 ). 
Second, RADseq loci are dominant—substitutions that cause the loss of restriction 
sites create null alleles (Gautier et al.  2012 ; McCormack et al.  2013a ). Thus, 
RADseq is not recommended for deeper-level phylogenetics because variation in 
restriction sites that occurs across divergent taxa yields large  amounts   of missing 
data across a given taxonomic sample (McCormack et al.  2012 ). Third, most 
RADseq users experience signifi cant variance in reproducibility among taxa or 
projects, which can cause many samples to fail quality control, increasing the num-
ber of samples that must be repeated. Fourth, the variance inherent in RADseq 
(Davey et al.  2013 ) frequently results in sparse data matrixes. Finally, RADseq also 
presents challenges post-sequencing when trying to determine whether fragments 
are paralogs and have appropriate coverage, because they were not targeted   
(McCormack et al.  2013a ).  

3.1.5     Target Enrichment 

 Target enrichment approaches (also known as sequence capture and gene capture) 
use baits (also known as probes) to specifi cally pull out fragments of interest from 
a genomic library, keeping the fragments of interest while fragments that do not 
hybridize to the baits are washed away (Mamanova et al.  2010 ). In contrast to 
RADseq, target enrichment has higher up-front costs, both  for   library preparation 
and  the   cost of baits and capture, but is more effi cient than RADseq because spe-
cifi c targeted areas make up large portions of the data (Grover et al.  2011 ). Target 
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enrichment is less likely than RADseq to suffer from allelic loss (null alleles) 
because alleles with one to several substitutions are recovered at a higher rate across 
individuals and species. In addition, target enrichment baits can be designed to tar-
get a variety of genomic locations including intergenic regions assumed to evolve 
under neutral processes, making this method ideal for population-level questions. 
Target enrichment is also useful for organisms with large, complex genomes (such 
as plants or amphibians) because targeting specifi c regions can avoid repetitive ele-
ments. These strengths of target enrichment result from  a priori  upstream methods 
to eliminate potentially paralogous sequences, regions of low complexity, and repet-
itive regions while focusing on those targeted regions of interest and returning data 
having high coverage across these regions. Moreover, baits can be designed to target 
regions of varying size depending on different treatments of the data during library 
preparation and the MPS platform used (McCormack et al.  2013a ). 

  Disadvantages   of target enrichment include: (1) prior genetic resources are 
needed to design baits (e.g., genomes, genomic regions, or transcriptomes of related 
species); (2) bait design can sometimes be challenging when targeting genomic 
regions that are highly variable within and among species (e.g., introns, immune- 
coding loci); and (3) most target enrichment studies to date have focused on using 
genomic libraries of randomly sheared DNA, which are more expensive to create 
than RADseq libraries and result in less coverage of targeted bases per sequence. 
Below, we discuss study design and bioinformatic methods to ameliorate many of 
these disadvantages, with a focus on target enrichment for population genetic and 
phylogenetic studies.   

3.2     Experimental Design Considerations 

 As with any study, understanding the biology of the organism(s) of interest is criti-
cally important to study design and downstream analyses. For instance, knowing 
whether the organism under study has undergone recent gene/genome duplications, 
whether the organism is polyploid, and/or whether the lineages being studied fre-
quently hybridize can have a dramatic infl uence on data collection and subsequent 
inference. Paralogs, hybridization, and horizontal gene transfer can infl uence gene 
tree discordance  for   phylogenetic analyses. In addition, many programs have a long 
list of assumptions or may not properly model aspects of the study system if the 
proper number of samples has not been sequenced. As an example, *BEAST is an 
excellent program for coestimating gene trees and their underlying species tree 
using a Bayesian MCMC procedure; however, the authors of *BEAST recommend 
the use of at least two individuals per species to properly estimate population param-
eters (Heled and Drummond  2010 ). Knowing this prior to sequencing can help bet-
ter inform experimental design and simplify downstream analyses. 

 When considering the correct number of individuals per species to sample, in a 
phylogenetic context, it is mostly based on preference, study system, sample avail-
ability, and downstream analyses. If the study system has  frequent   hybrids or 
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taxonomic designations below the species level, then one may consider including 
multiple exemplar individuals for a given species to examine reciprocal monophyly 
within species. In this case, a phylogenetic program that assigns individuals to spe-
cies and then infers the phylogeny of the species may be more appropriate than 
having a phylogeny where every individual represents a lineage. Moreover, some 
phylogenetic programs require that every gene has a representative sequence from 
an out-group (Table  3.3 ). Therefore, it may be advantageous to include multiple 
exemplar individuals of the out-group species to increase the likelihood of capturing 
a high number of targets in the out-group. This is especially important to consider if 
the out-group was not used in the bait design and is distantly related to the in-group 
species, which would result in more sequence variability in regions targeted by the 
hybrid enrichment baits between out-group and in-group members. Whenever pos-
sible, it is recommended that multiple individuals per species are sequenced, as it 
not only helps analyses but safeguards against species or population dropout due to 
unexpected low sequence coverage or low enrichment effi ciency of any particular 
sample. While multiple exemplars per species or populations are benefi cial to both 
phylogenetic  and   population genomic inferences, if the taxonomic sample is large, 
then it may not be cost-effective or computationally effi cient to include multiple 
individuals per species.

   In contrast to phylogenomic studies,    the number of individuals used for popula-
tion genomic studies is more contingent on capturing rare alleles within a  population. 
Having prior knowledge of the system (i.e., population size, generation time, etc.) 
can better inform this decision. Ideally sampling a larger number of individuals per 
population is better, but sample size is dependent upon sample availability, number 
of populations, number of sequence tags needed for pooling samples, and overall 
sequencing costs, including the benchwork costs and amount of sequencing required 
to obtain adequate coverage. Obtaining samples for population-level work can also 
be more diffi cult. However, for both phylogenetic and population-level sequencing, 
DNA from preserved samples (i.e., herbaria, zoological collections, etc.) have been 
successfully sequenced using target enrichment methods (e.g., Carpenter et al. 
 2013 ; Enk et al.  2014 ; Comer et al.  2015 ; McCormack et al.  2015 ). The ability to 
use fragmented DNA for target enrichment greatly facilitates the sequencing of 
larger sets of individuals. 

 When deciding on the number of loci to target, it is best to plan on some modest 
proportion of the loci being dropped from analysis due to low coverage or poor 
enrichment across taxa. Thus, designing  baits for a large amount of target loci  will 
help to keep the fi nal number of loci analyzed at the desired level, even after fi ltering 
poorly covered  targets. The number of targeted loci that may actually be used for 
analysis varies among studies, ranging from 35 % to close to 100 % (Heyduk et al. 
 2016 ; McCormack et al.  2013b ; Stephens et al.  2015a ). These numbers can vary 
depending on biology  and   evolutionary history of the focal organisms, the phyloge-
netic scope or population divergence among the samples, and the number of sam-
ples that will be included (e.g., if a locus needs to be present in at least 50% of 
individuals to be analyzed, then increasing the number of samples makes this 
threshold harder to reach). 
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 Determining the number  of   targeted loci may also be dependent on the system of 
interest and the study question. Questions pertaining to population genomics would 
benefi t from sampling as many loci as the cost of sequencing allows to ensure detec-
tion of outlier loci which can improve parameter estimates such as effective popula-
tion size and relatedness (Luikart et al.  2003 ). For studies that are examining 
population differentiation in phenotypic space, a larger number of loci are important 
to be able to accurately pinpoint genomic regions responsible for any local adapta-
tion. On the other hand, genomic studies assessing population structure at a fi ne 
scale would benefi t from highly informative loci. When selecting the number of loci 
to target  for   phylogenomic studies, the decision is equally situational. For example, 
if the study system has been historically diffi cult to resolve due to rapid or recent 
radiation and/or high levels of gene tree discordance, then including more genes or 
more informative genes in the analyses should improve resolution of species rela-
tionships. Although one would always prefer highly informative loci, it is diffi cult 
to predict which loci will be informative  a priori . Lastly, computational time should 
be taken into account when adding more loci to any study, as many statistically 
robust methods (e.g., *BEAST, see “Post-sequencing”) are unable to handle large 
datasets, and analysis time increases with each locus. 

 The types of  genomic regions (e.g., exons, introns, etc.)   collected using target 
enrichment can vary within or across studies. General approaches range from col-
lecting single loci with single baits to using multiple baits to collect loci spread 
throughout the genome to collecting data from a single long region of interest with 
overlapping (tiled) baits (see bait design below) Exons are common targets, includ-
ing collection of all the exons (i.e., the exome) of model organisms, but any region 
of the genome may be targeted by baits. 

   The use  of   ultraconserved elements ( UCEs)   for target enrichment is becoming 
popular given their applicability across extremely divergent taxa (Bejerano et al. 
 2004 ; Faircloth et al.  2012 ; McCormack et al.  2012 ). UCEs are highly conserved 
genomic regions that are ≥60 bp and found among widely divergent taxa (Bejerano 
et al.  2004 ; Dermitzakis et al.  2005 ). UCEs are appealing as targets because they are 
abundant, extremely conserved, straightforward to identify, and found within many 
groups of organisms (Stephen et al.  2008 ). In addition, UCEs tend to be orthologous 
(Derti et al.  2006 ) with few retroelement insertions. Finally, their utility for phy-
logenomic approaches is that while UCEs themselves show reduced variation, mak-
ing them easy to capture, the fl anking regions show much higher counts of 
informative sites (Faircloth et al.  2012 ). Several research groups have targeted con-
served elements for target enrichment approaches, and much work remains to test 
and optimize the methods of identifying and using such loci  . Here, we have focused 
on those methods that are open-access, because they are amenable to continued 
optimization and improvement by the research community. 
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3.2.1     Cost Reductions 

  The method used for re-sequencing can vary based on the number of individuals and 
number of loci required to address the questions of interest (Fig.  3.1 ). For questions 
that require sampling a limited number of individuals (<50) at very few loci (1–3), 
traditional PCR and Sanger sequencing may be the most cost- and time-effective 
methods. On the other end of the spectrum, a one-time study requiring many loci for 
few individuals might be best served by transcriptome sequencing. For studies 
requiring the collection of large numbers of loci from large numbers of individuals, 
then RADseq and/or target enrichment could be warranted. RADseq produces 
libraries at the lowest cost per sample, but more funds are spent on sequences that 
ultimately will not be used. Target enrichment signifi cantly reduces both cost and 
time spent on sequencing, but methods to reduce costs prior to sequencing are 
important. Below we focus on ways to reduce costs for target enrichment. 

 Although a variety of home-brew methods are possible, commercial synthesis of 
target enrichment baits is the most convenient and cost-effective method for most 
researchers to conduct target enrichment (Fig.  3.2 ). Most companies that provide 
baits offer both premade kits and custom bait designs. A wide spectrum of baits can 
be accommodated, ranging from single biotinylated oligos from traditional oligo-
nucleotide manufacturers (e.g., IDT, Life Technologies, Sigma, etc.) to companies 
that use high-density microarray technologies (e.g., Agilent, MYcroarray, 
NimbleGen, etc.) to construct massive numbers of unique baits. If <100 baits are 
needed, traditional biotinylated oligonucleotides are generally most economical. 
For example, if a study requires few loci for a large number of individuals, one 
might consider homemade baits complementary to the sequences of interest (e.g., 
for studies focusing on one pathway or known genes of interest). This methodology 
typically requires the bait sequence of interest to be PCR amplifi ed, then subse-
quently size selected and biotinylated (see Peñalba et al.  2014  for methodological 
descriptions). If >1000 baits are needed, then high-density approaches for bait con-
struction are most economical. Whole-exome capture kits for humans and model 
species can include hundreds of thousands of baits.

   Although custom, commercial, high-bait number kits have list costs of hundreds 
of dollars per sample, many methods are available for reducing the costs of target 
enrichment when using such kits. First, it has long been appreciated that pooling 
sample libraries prior to conducting enrichment hybridization is an effi cient way to 
reduce costs (Fig.  3.2 ; Cummings et al.  2010 ; Shearer et al.  2012 ). In this strategy, 
individual samples are tagged during library construction and pooled prior to target 
enrichment. This allows the costs of target enrichment to be divided among multiple 
samples. Pooling generally ranges from 2 to 96 samples per pool, with trade-offs 
between better coverage (i.e., less variance in capture effi ciency and read depth with 
fewer samples per pool) and better cost savings (more samples per pool). In prac-
tice, we generally pool 4 to 12 samples prior to enrichment (Faircloth et al.  2012 ; 
Heyduk et al.  2016 ; Stephens et al.  2015a ;   http://ultraconserved.org    ). When pooling, 
samples should have similar: molarity (i.e., accounting for insert size and concen-
tration), copy number (i.e., accounting for genome size and ploidy), and sequence 
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  Fig. 3.2    Overview of the wet-lab workfl ow for target enrichment       

divergence from the baits (or phylogenetic distance from the taxon used for bait 
design). Any of these three factors can lead to preferential capture of loci in higher 
number from some of the taxa in the pool (i.e., those with more targets or those with 
targets more similar to the baits than other individuals in the pool). 
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 In addition to pooling prior to hybridization reactions, the quantity of baits per 
reaction may also be decreased if the targeted number of base pairs is signifi cantly 
smaller than the protocol assumes (Faircloth et al.  2012 ; Heyduk et al.  2016 ;   http://
ultraconserved.org    ). Indeed, fl ooding the reaction with an overwhelming excess of 
baits relative to genomic targets can reduce capture effi ciency rather than increase 
it. As a simple example, consider a project in which a researcher wishes to survey 
1000 loci from 960 individuals. That research might design 2 baits per locus × 1000 
loci = 2000 baits. A single custom bait kit that normally allows 12 captures, each 
with a 20,000 bait pool, is all that is necessary to conduct this experiment because 
the researcher can dilute the baits tenfold (20,000/2000 = 10; yielding enough baits 
for 120 captures instead of 12) and pool 8 samples per capture (120 × 8 = 960). 
Additional hybridization reagents will be necessary, but these can be purchased 
commercially or made from common reagents (Blumenstiel et al.  2010 ;   http://ultra-
conserved.org    ). 

 Library preparation costs are another signifi cant expense for target enrichment. 
Library costs can be reduced by decreasing reaction sizes and/or using home-brew 
protocols (e.g., Meyer and Kircher  2010 ; Fisher et al.  2011 ; Glenn et al.  2016 ;   http://
ultraconserved.org    ) rather than commercial kits. Strategically choosing a sequence 
tagging scheme can reduce costs as well. Illumina sequencing was once limited to a 
single 6 nt index. Newer methods allow two indices per fragment, employing a 
combinatorial approach that increases the versatility of indexing. With the dual- 
indexing method,  n  unique barcodes for each side of the fragment can be used on  n  2  
libraries to reduce the number, complexity, and cost of barcode oligos. 

 Finally, in addition to  the   on-target sequences captured, target enrichment meth-
ods also yield off-target bonus sequences (i.e., DNA sequence lagniappe). Off-target 
sequences are unavoidable because no target enrichment process is perfectly effi -
cient. Thus, sequences that have partial similarity to the baits or were simply present 
in the pre-enrichment library, especially in high-copy numbers, will be present post- 
enrichment. As a result, high-copy DNA from chloroplasts, mitochondria, and ribo-
somes are commonly sequenced as off-target reads. These sequences are often 
informative however, and studies in both plants and animals have used these bonus 
sequences to assemble complete or mostly complete chloroplast and mitochondrial 
genomes  (Weitmeier et al.  2014 ; Stephens et al.  2015a , b ; Meiklejohn et al.  2014 ; 
Raposo do Amaral et al.  2015 ).  

3.2.2     Workfl ow Bottlenecks 

  Sequence capture is highly effective  at   generating a large number of sequences for 
many individuals rapidly and consistently. While sequencing methods continue to 
improve, a number of bottlenecks exist in current workfl ows for sequence capture. 
The speed at which hundreds of libraries can be generated is limited by human 
labor, although protocols exist for robotic library preparation (e.g., Fisher et al. 
 2011 ; Rohland and Reich  2012 ). Quantifi cation of hundreds of libraries 
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pre- hybridization is expensive in both time and cost, depending on the method used. 
Most hybridization methods currently require ≥12 h for libraries to hybridize to 
baits. Shorter hybridization times are possible but generally require shorter baits, 
which require trade-offs in specifi city and ability to capture library fragments with 
small sequence differences. Post-sequencing bioinformatic analysis is often not 
limited by human labor but by computational power; the same hundreds of libraries 
that take human hours to create may take many days and gigabytes of memory to 
analyze. For both pre- and post-sequencing, the number of individuals is the most 
infl uential limitation to sequence capture projects. As library protocols become 
more effi cient and analysis programs are written to accommodate large numbers of 
individuals sequenced at many loci, sequence capture bottlenecks will decrease, 
and multi-species phylogenies and robust population genomics studies will become 
the norm .   

3.3     Bioinformatics 

3.3.1     Pre-sequencing 

  Initial bioinformatics work will depend on whether capture baits are being designed 
in-house or are available from a prior study (e.g., ultraconserved elements (UCEs), 
Faircloth et al.  2012 ). Bait design  de novo  requires genomic resources and can be 
conducted using genome sequences, transcriptomes, or even EST databases 
(Fig.  3.2 ). Comparative analyses of genomic data from divergent taxa can be used 
to design baits that will work across study systems including divergent taxa; for 
example, using regions that are conserved across a family will result in baits more 
likely to anneal to targeted regions and thus give more representative sequences per 
species. If the study requires examination of intra- and interspecifi c variation, then 
baits must be designed so they capture fragments with informative intraspecifi c 
sequence differences while still being able to capture targets across species (Stephens 
et al.  2015b ), or suffi cient amounts of sequence polymorphisms must accumulate in 
the regions immediately fl anking the conserved sequences used for baits (Faircloth 
et al.  2012 ; Smith et al.  2014 ). This technique could also be applied to bait design 
for population-level questions. In particular, having genomic resources for multiple 
populations across the range of interest will help ensure baits are designed that 
maximize differences between and among populations. 

 Avoiding duplicated sequences is paramount to both phylogenomic and popula-
tion genomic analyses, and care should be taken to exclude regions of the genome 
present in more than one copy (Faircloth et al.  2012 ,  2015 ). Prior to bait design, all 
repeat-like regions across the source data should be masked, and bait design proto-
cols should avoid these regions. It is also recommended that potential areas for 
targeting should be aligned within and among species to ensure that targets are 
orthologous and only present in a single copy, especially in systems where poly-
ploidy is abundant (e.g., low-copy genes across angiosperms described in Duarte 
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et al.  2010 , as done in Heyduk et al.  2016 ). Once targets have been determined, baits 
can be designed in-house (cf.   http://ultraconserved.org    ), or  target   sequence informa-
tion can be sent to commercial companies for bait design and synthesis. Bait sets 
may be designed having one bait per target or including multiple baits that are 
overlapped (tiled) across longer regions. Whether or how much to overlap baits 
depends primarily on the size of the targets, the number of baits, and research 
budget. Additionally, the sequence similarity of the taxa of interest will infl uence 
not only the optimal amount of overlap but also if multiple baits per locus (i.e., baits 
designed from multiple taxa) are necessary or desirable. Light (2×) tiling (i.e., each 
target nucleotide has two  baits) can increase capture success even when targets are 
small and the target species are similar, thus decreasing sequencing costs but 
increasing bait costs relative to no tiling .  

3.3.2     Post-sequencing for Phylogenomics Designs 

  Bioinformatics analysis post-sequencing can be quite daunting, but more pipelines 
and programs are being designed to handle these data. For example, those targeting 
UCEs can use phyluce (Faircloth  2016 ;   https://github.com/faircloth-lab/phyluce    ) to 
go from raw reads to fi nal alignments for phylogenetic analyses, with an added 
bonus of fl exibility regarding how baits were designed. Throughout this process, 
phyluce will output relevant summary information that can be reported in a table as 
a supplement to the manuscript (see reporting section below). An alternative method 
from Heyduk et al.  2016  (  https://github.com/kheyduk/reads2trees    ) is less stream-
lined than phyluce but allows for more customizable parameters throughout the 
bioinformatic pipeline. Together these programs and pipelines are achieving the 
same goal with very similar methodological steps (Fig.  3.3 ). First, all raw reads 
must be cleaned by removing Illumina adapters and trimming reads with poor qual-
ity scores. These clean reads are then used for assembly, which can either be refer-
ence based or  de novo . Users can assemble reads through both routes and then 
merge similar sequences or opt to use one type of assembly program. The resulting 
assembled contigs can then be matched via local alignment searches (e.g., BLAST 
or LASTZ) against the initial targets and retained for further analyses. Contigs that 
match the target areas should be sorted into loci (e.g., by merging exons from the 
same gene), aligned, and trimmed prior to downstream analyses. A second round of 
duplicate removal may be necessary, depending on the target loci, because paralo-
gous sequences may be captured or make it through as nontarget data that were not 
in the initial reference used for bait design.

   We have seen a dramatic increase in the amount of data that can be collected 
using recent genomic techniques, and this trend is likely to increase as sequencing 
costs continue to decrease. The bottleneck with handling high-throughput data 
generally arises from the computational time required for their analysis and from 
our current understanding of phylogenomics and population dynamics. Historically, 
phylogeneticists would concatenate genes to estimate the species tree, but both 
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empirical and theoretical data suggest that this is not always a robust method. 
Specifi cally, it has been known for some time that gene trees can have different 
histories from each other and from the species tree. Gene tree discordance can 
impact phylogenetic analyses, and modeling the processes that lead to discordance 
(i.e., incomplete lineage sorting [ILS], recombination, hybridization, etc.) has been 
challenging. To date the majority of phylogenetic programs can only estimate spe-
cies trees when accounting for ILS. Programs are emerging to model the process of 
hybridization (STEM-hy—Kubatko  2009 ; PhyloNet—Yu et al.  2011 ; Yu and 
Nakhleh  2015 ), and, in general, the analysis of multilocus data is rapidly develop-
ing, making it hard for newcomers to fi nd appropriate programs for analyzing their 
data. Care should also be taken to consider the biology of your taxa of interest. 
Therefore, we recommend that researchers consider the programs and the underly-
ing models they are most likely going to be implementing given their system. For 
example, understanding the phylogenetic relationships of a recent or rapid radiation 
will most likely involve high levels of ILS and possibly hybridization. In this exam-
ple, it may be worthwhile to sequence multiple individuals per species to increase 
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the accuracy of parameter estimation for the coalescent models (Heled and 
Drummond  2010 ), but not all programs are capable of taking into  account   multiple 
individuals per species (Table  3.3 ). In addition, some programs may take an exceed-
ingly long time (or fail) to run depending on the number of loci and number of taxa 
input (Table  3.3 ). Computational biologists are developing new ways to reduce the 
size and complexity of datasets for phylogenetic analyses (e.g., Bayzid and Warnow 
 2013 ), though these methods should be carefully evaluated on individual projects to 
assess their suitability .  

3.3.3     Post-sequencing for Population Genomic Designs 

 Many of the  diffi culties   described above for phylogenetic analyses hold true for 
population genomic analyses, as well. Pipelines for analyzing target enrichment 
data collected at the population level are generally lacking (but see Faircloth  2016 ; 
  https://github.com/mgharvey/seqcap_pop    ). With a bit of legwork, one can identify 
genomic features of interest, including SNP and indel calls and use these data to 
estimate heterozygosity, FST, Tajima’s D, and others, using the bcftools (  https://
github.com/samtools/bcftools    ) command line program (among others). The pro-
gram requires reads to be mapped to some sort of assembly or reference genome, 
and it extracts and analyzes relevant information from those mappings. Note, how-
ever, that the estimates of population genomic statistics through bcftools are only as 
good as the reads and reference contigs that are used in mapping;    duplicated loci of 
any kind could allow for a read to map to multiple locations and create false allele 
calls and erroneous estimates. Low-coverage contigs are particularly problematic 
because they may contain erroneous homozygous SNP calls.  

3.3.4     Computational Resource Requirements 

  Although it is possible to run most of the individual programs on desktop comput-
ers, parallel compute clusters are highly recommended or necessary to process the 
data in a timely and effi cient manner. For projects that have an especially large 
number of individuals that need to have sequence data assembled  de novo , paral-
lelization will greatly increase the speed at which assemblies can be completed. 
Similarly, for many loci, performing many calculations across all loci will be unten-
able without the help of parallel computing. In addition to large clusters housed at 
universities and research centers, researchers interested in attempting large-scale 
analyses can use third-party computing such as CyVerse (  http://www.cyverse.org/    ), 
Amazon (  www.amazon.com/hpc    ), and XSEDE (  https://www.xsede.org/home    ). 
While parallelization greatly reduces time spent on the bioinformatics side of target 
enrichment, researchers should note the memory requirements for a number of pro-
grams. For example, Trinity (Grabherr et al.  2011 ) recommends 1 Gb of RAM per 
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every 1 M reads; RAxML requires ~2.8 Gb for a 100 kb alignment of 50 taxa (  http://
www.exelixis-lab.org/software.html    ). Perhaps most important for consideration is 
 the   sheer size of storage space required to store raw reads, cleaned reads, assem-
blies, and various intermediate fi les that are produced during analysis. Projects with 
many individuals and loci can quickly use a terabyte of hard-drive space .   

3.4     Results Reporting and Community Resources 

3.4.1     Standards of Reporting 

 Sequence capture methods, no matter how baits are designed, are fundamentally 
similar in their attempt to reduce genomic representation in the sequenced reads. As 
a result, similar statistics are important for assessing the quality and effi ciency of 
sequence capture. For example, the number  of   on-target contigs assembled per 
library, relative to how many were targeted, gives a general impression of how well 
hybridization worked, although this metric is slightly confounded by sequencing 
depth, which alone can increase the number of assembled contigs. Coverage statis-
tics—both for assembled contigs from targeted regions and off-target regions and 
perhaps for exon and intron sequences separately (see Heyduk et al.  2016 )—indi-
cate whether the depth of sequencing was adequate to call polymorphisms and 
whether hybridization of certain baits was more effi cient than others, perhaps due to 
sequence similarity or genomic copy variation. For studies that attempt to capture 
loci from taxa across broader phylogenetic distance, assessing hybridization varia-
tion in baits across taxa helps to defi ne the phylogenetic boundary of effective cap-
ture using a particular bait set. In addition, it is often important to know how effi cient 
capture was across the entire library—in other words, researchers might be inter-
ested in how many reads were on target or how many reads map to contigs used in 
the fi nal analyses. Consistent reporting of such metrics enables comparisons of vari-
ous methods and techniques across different sampling schemes and bait designs, 
leading to informed decision-making by researchers looking to implement sequence 
capture methods. 

 While numerical information about a given sequence capture project is useful for 
those looking to replicate methodology, the raw and cleaned data generated can be 
used by the larger scientifi c community as a whole. For this reason, researchers 
should take special care to deposit raw reads, alignments, and downstream analyses 
into common repositories (e.g., NCBI’s Short Read Archive (  http://www.ncbi.nlm.
nih.gov/sra    ) and Dryad (  http://datadryad.org/    ) ). The bait sequences should be 
shared after publication as well. The time and effort put into designing effective and 
informative baits should be stretched beyond a single project. Indeed, some bait sets 
have suffi cient utility that commercial companies may synthesize them in bulk, 
making them available to the research community at far lower cost than custom kits 
(  http://www.mycroarray.com/mybaits/mybaits-UCEs.html    ).       
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    Annex: Quick Reference Guide 
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 Fig. QG3.1    Representation of the wet-lab procedure workfl ow  
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 Fig. QG3.2    Main steps of the computational analysis pipeline  
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